Geometric optics and the Cauchy problem for nonlinear Schrödinger equation

Rémi Carles
CNRS \& Univ. Montpellier 2

Geometric optics for Schrödinger equation

Schrödinger equation in a semi-classical regime $(\varepsilon \ll 1)$:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=0 \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x) e^{i \phi_{0}(x) / \varepsilon}
$$

where $\psi^{\varepsilon}: \mathbb{R}_{t} \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C}$.

Example

If $\phi_{0}(x)=k \cdot x: \phi(t, x)=k \cdot x-\frac{|k|^{2}}{2} t \rightsquigarrow$ global
If $\phi_{0}(x)=a|x|^{2}: \phi(t, x)=\frac{2 a}{a t+2}|x|^{2} \rightsquigarrow$ focusing at $t=-2 / a$.

Geometric optics for Schrödinger equation

Schrödinger equation in a semi-classical regime ($\varepsilon \ll 1$):

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=0 \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x) e^{i \phi_{0}(x) / \varepsilon}
$$

where $\psi^{\varepsilon}: \mathbb{R}_{t} \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C}$.
WKB: seek $\psi^{\varepsilon}(t, x) \underset{\varepsilon \rightarrow 0}{\sim} a(t, x) e^{i \phi(t, x) / \varepsilon}$.
eikonal equation, $\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=0$
transport equation, $\partial_{t} a+\nabla \phi \cdot \nabla a+\frac{1}{2} a \Delta \phi=0 \quad ; \quad a_{\mid t=0}=a_{0}$

Example

If $\phi_{0}(x)=\kappa \cdot x: \phi(t, x)=\kappa \cdot x-\frac{|\kappa|^{2}}{2} t \rightsquigarrow$ global.
If $\phi_{0}(x)=a|x|^{2}: \phi(t, x)=\frac{2 a}{a t+2}|x|^{2} \rightsquigarrow$ focusing at $t=-2 / a$

Geometric optics for Schrödinger equation

Schrödinger equation in a semi-classical regime $(\varepsilon \ll 1)$:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=0 \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x) e^{i \phi_{0}(x) / \varepsilon}
$$

where $\psi^{\varepsilon}: \mathbb{R}_{t} \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C}$.
WKB: seek $\psi^{\varepsilon}(t, x) \underset{\varepsilon \rightarrow 0}{\sim} a(t, x) e^{i \phi(t, x) / \varepsilon}$.
$\mathcal{O}\left(\varepsilon^{0}\right)$: eikonal equation, $\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=0 \quad ; \quad \phi_{\mid t=0}=\phi_{0}$.

Geometric optics for Schrödinger equation

Schrödinger equation in a semi-classical regime $(\varepsilon \ll 1)$:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=0 \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x) e^{i \phi_{0}(x) / \varepsilon}
$$

where $\psi^{\varepsilon}: \mathbb{R}_{t} \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C}$.
WKB: seek $\psi^{\varepsilon}(t, x) \underset{\varepsilon \rightarrow 0}{\sim} a(t, x) e^{i \phi(t, x) / \varepsilon}$.
$\mathcal{O}\left(\varepsilon^{0}\right)$: eikonal equation, $\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=0 \quad ; \quad \phi_{\mid t=0}=\phi_{0}$.
$\mathcal{O}\left(\varepsilon^{1}\right)$: transport equation, $\partial_{t} a+\nabla \phi \cdot \nabla a+\frac{1}{2} a \Delta \phi=0 \quad ; \quad a_{\mid t=0}=a_{0}$.

Example

Geometric optics for Schrödinger equation

Schrödinger equation in a semi-classical regime ($\varepsilon \ll 1$):

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=0 \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x) e^{i \phi_{0}(x) / \varepsilon}
$$

where $\psi^{\varepsilon}: \mathbb{R}_{t} \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C}$.
WKB: seek $\psi^{\varepsilon}(t, x) \underset{\varepsilon \rightarrow 0}{\sim} a(t, x) e^{i \phi(t, x) / \varepsilon}$.
$\mathcal{O}\left(\varepsilon^{0}\right)$: eikonal equation, $\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=0 \quad ; \quad \phi_{\mid t=0}=\phi_{0}$.
$\mathcal{O}\left(\varepsilon^{1}\right)$: transport equation, $\partial_{t} a+\nabla \phi \cdot \nabla a+\frac{1}{2} a \Delta \phi=0 \quad ; \quad a_{\mid t=0}=a_{0}$.

Example

If $\phi_{0}(x)=\kappa \cdot x: \phi(t, x)=\kappa \cdot x-\frac{|\kappa|^{2}}{2} t \rightsquigarrow$ global.
If $\phi_{0}(x)=a|x|^{2}: \phi(t, x)=\frac{2 a}{a t+2}|x|^{2} \rightsquigarrow$ focusing at $t=-2 / a$.

Nonlinear geometric optics

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=\varepsilon^{J} a_{0}(x) e^{i \phi_{0}(x) / \varepsilon}
$$

Defocusing nonlinearity: "no blow-up".

Equivalently:

As in the linear case, seek

(gauge invariance).

Nonlinear geometric optics

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=\varepsilon^{J} a_{0}(x) e^{i \phi_{0}(x) / \varepsilon}
$$

Defocusing nonlinearity: "no blow-up". Equivalently:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon^{\alpha}\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x) e^{i \phi_{0}(x) / \varepsilon}
$$

As in the linear case, seek
(gauge invariance).

Nonlinear geometric optics

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=\varepsilon^{J} a_{0}(x) e^{i \phi_{0}(x) / \varepsilon}
$$

Defocusing nonlinearity: "no blow-up". Equivalently:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon^{\alpha}\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x) e^{i \phi_{0}(x) / \varepsilon}
$$

As in the linear case, seek

$$
\psi^{\varepsilon}(t, x) \underset{\varepsilon \rightarrow 0}{\sim} a(t, x) e^{i \phi(t, x) / \varepsilon}
$$

(gauge invariance).

Notion of criticality

Plug the ansatz into the equation:

$$
\mathcal{O}\left(\varepsilon^{0}\right): \partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=\left\{\begin{array}{r}
0 \\
\text { if } \alpha>0 \\
-|a|^{2 \sigma}
\end{array} \text { if } \alpha=0 \quad ; \quad \phi_{\mid t=0}=\phi_{0} .\right.
$$

> Critical values: $\alpha_{c}=1$: "first" nonlinear effects (transport equation) $\alpha_{c}^{\prime}=0$: strongest nonlinear effects (eikonal equation).

> Remark
> If $\alpha \geqslant 1$: same eikonal equation as in the linear case.
> If $\alpha=0$ and $\phi_{0}=0$, we have $\partial_{t} \phi_{t=0} \neq 0$ (unless $\left.a_{0}=0\right)$

Notion of criticality

Plug the ansatz into the equation:

$$
\mathcal{O}\left(\varepsilon^{0}\right): \partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=\left\{\begin{array}{r}
0 \\
\text { if } \alpha>0 \\
-|a|^{2 \sigma}
\end{array} \quad \text { if } \alpha=0 \quad ; \quad \phi_{\mid t=0}=\phi_{0} .\right.
$$

$\mathcal{O}\left(\varepsilon^{1}\right): \partial_{t} a+\nabla \phi \cdot \nabla a+\frac{1}{2} a \Delta \phi= \begin{cases}0 & \text { if } \alpha>1 \\ -i|a|^{2 \sigma} a & \text { if } \alpha=1 ; a_{\mid t=0}=a_{0} . \\ ? ? & \text { if } \alpha<1\end{cases}$

Critical values: $\alpha_{c}=1$: "first" nonlinear effects (transport equation). $\alpha_{c}^{\prime}=0$: strongest nonlinear effects (eikonal equation).

Remark
 If $\alpha \geqslant 1$: same eikonal equation as in the linear case.
 If $\alpha=0$ and $\phi_{0}=0$, we have $\partial_{t} \phi_{\mid t=0} \neq 0$ (unless $a_{0}=0$)

Notion of criticality

Plug the ansatz into the equation:

$$
\mathcal{O}\left(\varepsilon^{0}\right): \partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=\left\{\begin{array}{rl}
0 & \text { if } \alpha>0 \\
-|a|^{2 \sigma} & \text { if } \alpha=0
\end{array} \quad ; \quad \phi_{\mid t=0}=\phi_{0} .\right.
$$

$\mathcal{O}\left(\varepsilon^{1}\right): \partial_{t} a+\nabla \phi \cdot \nabla a+\frac{1}{2} a \Delta \phi= \begin{cases}0 & \text { if } \alpha>1 \\ -i|a|^{2 \sigma} a & \text { if } \alpha=1 ; a_{\mid t=0}=a_{0} . \\ ? ? & \text { if } \alpha<1\end{cases}$
Critical values: $\alpha_{c}=1$: "first" nonlinear effects (transport equation). $\alpha_{c}^{\prime}=0$: strongest nonlinear effects (eikonal equation).
\square
Remark
If $\alpha \geqslant 1$: same eikonal equation as in the linear case.
If $\alpha=0$ and $\phi_{0}=0$, we have $\partial_{t} \phi_{\mid t=0} \neq 0$ (unless $a_{0}=0$)

Notion of criticality

Plug the ansatz into the equation:

$$
\mathcal{O}\left(\varepsilon^{0}\right): \partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=\left\{\begin{array}{rr}
0 & \text { if } \alpha>0 \\
-|a|^{2 \sigma} & \text { if } \alpha=0
\end{array} \quad ; \quad \phi_{\mid t=0}=\phi_{0} .\right.
$$

$\mathcal{O}\left(\varepsilon^{1}\right): \partial_{t} a+\nabla \phi \cdot \nabla a+\frac{1}{2} a \Delta \phi=\left\{\begin{array}{ll}0 & \text { if } \alpha>1 \\ -i|a|^{2 \sigma} a & \text { if } \alpha=1 \\ ? ? & \text { if } \alpha<1\end{array} ; a_{\mid t=0}=a_{0}\right.$.
Critical values: $\alpha_{c}=1$: "first" nonlinear effects (transport equation). $\alpha_{c}^{\prime}=0$: strongest nonlinear effects (eikonal equation).

Remark

If $\alpha \geqslant 1$: same eikonal equation as in the linear case.
If $\alpha=0$ and $\phi_{0}=0$, we have $\partial_{t} \phi_{\mid t=0} \neq 0$ (unless $a_{0}=0$).

A notion of well-posedness

(*)

$$
\partial_{t} u+L\left(\partial_{x}\right) u=F(u) \quad ; \quad u_{\mid t=0}=u_{0} .
$$

Definition (From KPV01)

The Cauchy problem is well posed from H^{s} to H^{k} if, for all bounded subset $B \subset H^{s}$, there exist $T>0$ and a Banach space $X_{T} \hookrightarrow C\left([0, T] ; H^{k}\right)$ such that:
(1) For all $u_{0} \in H^{s},\left(^{*}\right)$ has a unique solution $u \in X_{T}$.
(2) $u_{0} \in\left(B,\|\cdot\|_{H^{s}}\right) \mapsto u \in C\left([0, T] ; H^{k}\right)$ is continuous.

Critical thresholds

(NLS)

$$
i \partial_{t} u+\frac{1}{2} \Delta u=|u|^{2 \sigma} u \quad ; \quad u_{\mid t=0}=u_{0}
$$

Two (of the) conserved quantities:

Two important invariances:

- $u(t, x) \longmapsto \lambda^{1 / \sigma_{u}}\left(\lambda^{2} t, \lambda x\right), \lambda>0: H_{x}^{s_{C}-n o r m}$ invariant, $S_{C}=\frac{d}{2}-\frac{1}{\sigma}$ - $u(t, x) \mapsto e^{i v \cdot x-i|v|^{2} t / 2} u(t, x-v t), v \in \mathbb{R}^{d}: L_{x}^{2}$-norm invariant.

Critical thresholds

(NLS)

$$
i \partial_{t} u+\frac{1}{2} \Delta u=|u|^{2 \sigma} u \quad ; \quad u_{\mid t=0}=u_{0}
$$

Two (of the) conserved quantities:

$$
\begin{aligned}
M & =\int_{\mathbb{R}^{d}}|u(t, x)|^{2} d x \\
E & =\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla u(t, x)|^{2} d x+\frac{1}{\sigma+1} \int_{\mathbb{R}^{n}}|u(t, x)|^{2 \sigma+2} d x
\end{aligned}
$$

Two important invariances:

- $u(t, x) \mapsto \lambda^{1 / \sigma} u\left(\lambda^{2} t, \lambda x\right), \lambda>0$: $H_{x}^{s_{c}}$-norm invariant, $s_{C}=\frac{d}{2}-\frac{1}{\sigma}$ - $u(t, x) \mapsto e^{i v \cdot x-i|v|^{2} t / 2} u(t, x-v t), v \in \mathbb{R}^{d}: L_{x}^{2}$-norm invariant.

Critical thresholds

(NLS)

$$
i \partial_{t} u+\frac{1}{2} \Delta u=|u|^{2 \sigma} u \quad ; \quad u_{\mid t=0}=u_{0}
$$

Two (of the) conserved quantities:

$$
\begin{aligned}
M & =\int_{\mathbb{R}^{d}}|u(t, x)|^{2} d x \\
E & =\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla u(t, x)|^{2} d x+\frac{1}{\sigma+1} \int_{\mathbb{R}^{n}}|u(t, x)|^{2 \sigma+2} d x
\end{aligned}
$$

Two important invariances:

- $u(t, x) \mapsto \lambda^{1 / \sigma} u\left(\lambda^{2} t, \lambda x\right), \lambda>0: \dot{H}_{x}^{s_{c}}$-norm invariant, $s_{c}=\frac{d}{2}-\frac{1}{\sigma}$.
- $u(t, x) \mapsto e^{i v \cdot x-i|v|^{2} t / 2} u(t, x-v t), v \in \mathbb{R}^{d}: L_{x}^{2}$-norm invariant.

Well-posedness

- $s_{c} \geqslant 0$: well-posedness $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s}\left(\mathbb{R}^{d}\right)$ for $s>s_{c}$. (Cazenave-Weissler 90')
- $s_{c}<0$: well-posedness $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s}\left(\mathbb{R}^{d}\right)$ for $s \geqslant 0$. (Tsutsumi 87')

Lack of well-posedness: $s>0$

Assume $s_{c}>0$: lack of well-posedness $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s}\left(\mathbb{R}^{d}\right)$ for $0<s<s_{c}$.

- Lebeau for the wave equation $\partial_{t}^{2} u-\Delta u+u^{P}=0, x \in \mathbb{R}^{3}$ $p \in 2 \mathbb{N}+1, p \geqslant 7$; Séminaire Bourbaki by Guy Métivier.
- (NLS): Christ-Colliander-Tao, Burq-Gérard-Tzvetkov.

Argument: concentrated initial data, $u_{0}(x)=h^{M} a_{0}\left(\frac{x}{h}\right), h \rightarrow 0$
Boundedness in $H^{s}\left(\mathbb{R}^{d}\right): M-s \geqslant-d / 2$.
Scaling \rightsquigarrow supercritical geometric optics:

For very short time $\left(t \leqslant C \varepsilon|\ln \varepsilon|^{\theta}\right)$, Laplacian negligible.
Appearance of oscillations (ODE mechanism): decoherence, "norm inflation"

Lack of well-posedness: $s>0$

Assume $s_{c}>0$: lack of well-posedness $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s}\left(\mathbb{R}^{d}\right)$ for $0<s<s_{c}$.

- Lebeau for the wave equation $\partial_{t}^{2} u-\Delta u+u^{p}=0, x \in \mathbb{R}^{3}$, $p \in 2 \mathbb{N}+1, p \geqslant 7$; Séminaire Bourbaki by Guy Métivier.
- (NLS): Christ-Colliander-Tao, Burq-Gérard-Tzvetkov.

Argument: concentrated initial data, $u_{0}(x)=h^{M} a_{0}\left(\frac{x}{h}\right), h \rightarrow 0$. Boundedness in $H^{s}\left(\mathbb{R}^{d}\right): M-s \geqslant-d / 2$. Scaling \rightsquigarrow supercritical geometric optics:

For very short time $\left(t \leqslant C \varepsilon|\ln \varepsilon|^{\theta}\right)$, Laplacian negligible.
Appearance of oscillations (ODE mechanism): decoherence, "norm inflation"

Lack of well-posedness: $s>0$

Assume $s_{c}>0$: lack of well-posedness $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s}\left(\mathbb{R}^{d}\right)$ for $0<s<s_{c}$.

- Lebeau for the wave equation $\partial_{t}^{2} u-\Delta u+u^{p}=0, x \in \mathbb{R}^{3}$, $p \in 2 \mathbb{N}+1, p \geqslant 7$; Séminaire Bourbaki by Guy Métivier.
- (NLS): Christ-Colliander-Tao, Burq-Gérard-Tzvetkov.

Argument: concentrated initial data, $u_{0}(x)=h^{M} a_{0}\left(\frac{x}{h}\right), h \rightarrow 0$

Boundedness in $H^{s}\left(\mathbb{R}^{d}\right): M-s \geqslant-d / 2$.
Scaling \rightsquigarrow supercritical geometric optics:

For very short time $\left(t \leqslant C \varepsilon|\ln \varepsilon|^{\theta}\right)$, Laplacian negligible.
Appearance of oscillations (ODE mechanism): decoherence, "norm inflation"

Lack of well-posedness: $s>0$

Assume $s_{c}>0$: lack of well-posedness $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s}\left(\mathbb{R}^{d}\right)$ for $0<s<s_{c}$.

- Lebeau for the wave equation $\partial_{t}^{2} u-\Delta u+u^{p}=0, x \in \mathbb{R}^{3}$, $p \in 2 \mathbb{N}+1, p \geqslant 7$; Séminaire Bourbaki by Guy Métivier.
- (NLS): Christ-Colliander-Tao, Burq-Gérard-Tzvetkov.

Argument: concentrated initial data, $u_{0}(x)=h^{M} a_{0}\left(\frac{x}{h}\right), h \rightarrow 0$. Boundedness in $H^{s}\left(\mathbb{R}^{d}\right): M-s \geqslant-d / 2$.
Scaling

For very short time $\left(t \leqslant C \varepsilon|\ln \varepsilon|^{\theta}\right)$, Laplacian negligible. Appearance of oscillations (ODE mechanism): decoherence, "norm inflation"

Lack of well-posedness: $s>0$

Assume $s_{c}>0$: lack of well-posedness $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s}\left(\mathbb{R}^{d}\right)$ for $0<s<s_{c}$.

- Lebeau for the wave equation $\partial_{t}^{2} u-\Delta u+u^{p}=0, x \in \mathbb{R}^{3}$, $p \in 2 \mathbb{N}+1, p \geqslant 7$; Séminaire Bourbaki by Guy Métivier.
- (NLS): Christ-Colliander-Tao, Burq-Gérard-Tzvetkov.

Argument: concentrated initial data, $u_{0}(x)=h^{M} a_{0}\left(\frac{x}{h}\right), h \rightarrow 0$. Boundedness in $H^{s}\left(\mathbb{R}^{d}\right): M-s \geqslant-d / 2$.
Scaling \rightsquigarrow supercritical geometric optics:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi_{\mid t=0}^{\varepsilon}=a_{0}
$$

For very short time $\left(t \leqslant C \varepsilon|\ln \varepsilon|^{\theta}\right)$, Laplacian negligible.
Appearance of oscillations (ODE mechanism): decoherence, "norm inflation"

Lack of well-posedness: $s>0$

Assume $s_{c}>0$: lack of well-posedness $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s}\left(\mathbb{R}^{d}\right)$ for $0<s<s_{c}$.

- Lebeau for the wave equation $\partial_{t}^{2} u-\Delta u+u^{p}=0, x \in \mathbb{R}^{3}$, $p \in 2 \mathbb{N}+1, p \geqslant 7$; Séminaire Bourbaki by Guy Métivier.
- (NLS): Christ-Colliander-Tao, Burq-Gérard-Tzvetkov.

Argument: concentrated initial data, $u_{0}(x)=h^{M} a_{0}\left(\frac{x}{h}\right), h \rightarrow 0$.
Boundedness in $H^{s}\left(\mathbb{R}^{d}\right): M-s \geqslant-d / 2$.
Scaling \rightsquigarrow supercritical geometric optics:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi_{\mid t=0}^{\varepsilon}=a_{0}
$$

For very short time $\left(t \leqslant C \varepsilon|\ln \varepsilon|^{\theta}\right)$, Laplacian negligible.
Appearance of oscillations (ODE mechanism): decoherence, "norm inflation"

Lack of well-posedness: $s>0$

Assume $s_{c}>0$: lack of well-posedness $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s}\left(\mathbb{R}^{d}\right)$ for $0<s<s_{c}$.

- Lebeau for the wave equation $\partial_{t}^{2} u-\Delta u+u^{p}=0, x \in \mathbb{R}^{3}$, $p \in 2 \mathbb{N}+1, p \geqslant 7$; Séminaire Bourbaki by Guy Métivier.
- (NLS): Christ-Colliander-Tao, Burq-Gérard-Tzvetkov.

Argument: concentrated initial data, $u_{0}(x)=h^{M} a_{0}\left(\frac{x}{h}\right), h \rightarrow 0$.
Boundedness in $H^{s}\left(\mathbb{R}^{d}\right): M-s \geqslant-d / 2$.
Scaling \rightsquigarrow supercritical geometric optics:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi_{\mid t=0}^{\varepsilon}=a_{0}
$$

For very short time $\left(t \leqslant C \varepsilon|\ln \varepsilon|^{\theta}\right)$, Laplacian negligible. Appearance of oscillations (ODE mechanism): decoherence, "norm inflation".

Loss of regularity

Theorem (RC, T. Alazard-RC, L. Thomann)

Let $\sigma \geqslant 1$. Assume that $s_{c}=d / 2-1 / \sigma>0$, and let $0<s<s_{c}$. There exists a family $\left(u_{0}^{h}\right)_{0<h \leqslant 1}$ in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
\left\|u_{0}^{h}\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \rightarrow 0 \text { as } h \rightarrow 0
$$

a solution u^{h} to (NLS) and $0<t^{h} \rightarrow 0$, such that:

$$
\left\|u^{h}\left(t^{h}\right)\right\|_{H^{k}\left(\mathbb{R}^{d}\right)} \rightarrow+\infty \text { as } h \rightarrow 0, \forall k>\frac{s}{1+\sigma\left(s_{c}-s\right)}
$$

Corollary

Let $\sigma \geqslant 1$. Assume that $s_{c}=d / 2-1 / \sigma>0$, and let $0<s<s_{c}$. (NLS) is not locally well-posed from H^{s} to H^{k}, for all $k>\frac{s}{1+\sigma\left(s_{c}-s\right)}$.

Let $s_{\text {sob }}=\frac{d}{2} \frac{\sigma}{\sigma+1}$: corresponds to the embedding $H^{s_{\text {sob }}}\left(\mathbb{R}^{d}\right) \subset L^{2 \sigma+2}\left(\mathbb{R}^{d}\right)$.

Corollary

Let $d \geqslant 3$ and $\sigma>\frac{2}{d-2}$. There exists a family $\left(u_{0}^{h}\right)_{0<h \leqslant 1}$ in $S\left(\mathbb{R}^{d}\right)$ with

$$
M^{h}+E^{h} \rightarrow 0 \text { as } h \rightarrow 0,
$$

a solution u^{h} to (NLS) and $0<t^{h} \rightarrow 0$, such that:

Remark

Analogue of the result due to G. Lebeau in the case of the wave equation.

Let $s_{\text {sob }}=\frac{d}{2} \frac{\sigma}{\sigma+1}$: corresponds to the embedding $H^{s_{\text {sob }}}\left(\mathbb{R}^{d}\right) \subset L^{2 \sigma+2}\left(\mathbb{R}^{d}\right)$.

$$
\frac{s_{\mathrm{sob}}}{1+\sigma\left(s_{c}-s_{\mathrm{sob}}\right)}=1 .
$$

Corollary

Let $d \geqslant 3$ and $\sigma>\frac{2}{d-2}$. There exists a family $\left(u_{0}^{h}\right)_{0<h \leqslant 1}$ in $S\left(\mathbb{R}^{d}\right)$ with

a solution u^{h} to (NLS) and $0<t^{h} \rightarrow 0$, such that:

Remark

Analogue of the result due to G. Lebeau in the case of the wave equation.

Let $s_{\text {sob }}=\frac{d}{2} \frac{\sigma}{\sigma+1}$: corresponds to the embedding $H^{\text {sob }}\left(\mathbb{R}^{d}\right) \subset L^{2 \sigma+2}\left(\mathbb{R}^{d}\right)$.

$$
\frac{s_{\mathrm{sob}}}{1+\sigma\left(s_{c}-s_{\mathrm{sob}}\right)}=1
$$

Corollary

Let $d \geqslant 3$ and $\sigma>\frac{2}{d-2}$. There exists a family $\left(u_{0}^{h}\right)_{0<h \leqslant 1}$ in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
M^{h}+E^{h} \rightarrow 0 \text { as } h \rightarrow 0
$$

a solution u^{h} to (NLS) and $0<t^{h} \rightarrow 0$, such that:

$$
\left\|u^{h}\left(t^{h}\right)\right\|_{H^{k}\left(\mathbb{R}^{d}\right)} \rightarrow+\infty \text { as } h \rightarrow 0, \forall k>1 .
$$

Remark

Analogue of the result due to G. Lebeau in the case of the wave equation.

Formal proof

$u_{0}^{h}(x)=h^{s-d / 2} a_{0}\left(\frac{x}{h}\right), \quad h \rightarrow 0$: bounded in H^{s}, but not in $H^{s^{+}}$. To force the presence of semi-classical analysis, set:

We find: $i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x)$
About the homogeneous Sobolev norm of u^{h} :

$$
\left\|u^{h}(t)\right\|_{\dot{H}^{m}}=h^{s-m}\left\|\psi^{\varepsilon}\left(\frac{t}{h^{2} \varepsilon}\right)\right\|_{\dot{H}^{m}}
$$

Key phenomenon: for $\tau \approx 1, \psi^{\varepsilon}$ is ε-oscillatory.

Remark

Quasi-linear analysis is needed there (or analytic setting).

Formal proof

$$
u_{0}^{h}(x)=h^{s-d / 2} a_{0}\left(\frac{x}{h}\right), \quad h \rightarrow 0: \text { bounded in } H^{s}, \text { but not in } H^{s^{+}}
$$

To force the presence of semi-classical analysis, set:

$$
\varepsilon=h^{\sigma\left(s_{c}-s\right)} \underset{h \rightarrow 0}{\longrightarrow} 0 ; \psi^{\varepsilon}(t, x)=h^{\frac{n}{2}-s} u^{h}\left(h^{2} \varepsilon t, h x\right) .
$$

We find: $i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x)$
About the homogeneous Sobolev norm of u^{h} :

$$
\left\|u^{h}(t)\right\|_{H^{m}}=h^{s-m}\left\|_{\psi}=\left(\frac{t}{h^{2} \varepsilon}\right)\right\|_{H^{m}}
$$

Key phenomenon: for $\tau \approx 1, \psi^{\varepsilon}$ is ε-oscillatory.

Remark

Quasi-linear analysis is needed there (or analytic setting)

Formal proof

$$
u_{0}^{h}(x)=h^{s-d / 2} a_{0}\left(\frac{x}{h}\right), \quad h \rightarrow 0: \text { bounded in } H^{s}, \text { but not in } H^{s^{+}} .
$$

To force the presence of semi-classical analysis, set:

$$
\varepsilon=h^{\sigma\left(s_{c}-s\right)} \underset{h \rightarrow 0}{\longrightarrow} 0 \quad ; \quad \psi^{\varepsilon}(t, x)=h^{\frac{n}{2}-s} u^{h}\left(h^{2} \varepsilon t, h x\right) .
$$

We find: $i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x)$ About the homogeneous Sobolev norm of u^{h} :

$$
\left\|u^{h}(t)\right\|_{\dot{H}^{m}}=h^{s-m}\left\|\psi^{\varepsilon}\left(\frac{t}{h^{2} \varepsilon}\right)\right\|_{\dot{H}^{m}} .
$$

Key phenomenon: for $\tau \approx 1$,

Remark

Quasi-linear analysis is needed there (or analytic setting)

Formal proof

$$
u_{0}^{h}(x)=h^{s-d / 2} a_{0}\left(\frac{x}{h}\right), \quad h \rightarrow 0: \text { bounded in } H^{s}, \text { but not in } H^{s^{+}} .
$$

To force the presence of semi-classical analysis, set:

$$
\varepsilon=h^{\sigma\left(s_{c}-s\right)} \underset{h \rightarrow 0}{\longrightarrow} \quad ; \quad \psi^{\varepsilon}(t, x)=h^{\frac{n}{2}-s} u^{h}\left(h^{2} \varepsilon t, h x\right) .
$$

We find: $i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x)$
About the homogeneous Sobolev norm of u^{h} :

$$
\left\|u^{h}(t)\right\|_{\dot{H}^{m}}=h^{s-m}\left\|\psi^{\varepsilon}\left(\frac{t}{h^{2} \varepsilon}\right)\right\|_{\dot{H}^{m}} .
$$

Key phenomenon: for $\tau \approx 1, \psi^{\varepsilon}$ is ε-oscillatory.

Formal proof

$$
u_{0}^{h}(x)=h^{s-d / 2} a_{0}\left(\frac{x}{h}\right), \quad h \rightarrow 0 \text { : bounded in } H^{s}, \text { but not in } H^{s^{+}} .
$$

To force the presence of semi-classical analysis, set:

$$
\varepsilon=h^{\sigma\left(s_{c}-s\right)} \underset{h \rightarrow 0}{\longrightarrow} \quad ; \quad \psi^{\varepsilon}(t, x)=h^{\frac{n}{2}-s} u^{h}\left(h^{2} \varepsilon t, h x\right) .
$$

We find: $i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=a_{0}(x)$
About the homogeneous Sobolev norm of u^{h} :

$$
\left\|u^{h}(t)\right\|_{\dot{H}^{m}}=h^{s-m}\left\|\psi^{\varepsilon}\left(\frac{t}{h^{2} \varepsilon}\right)\right\|_{\dot{H}^{m}} .
$$

Key phenomenon: for $\tau \approx 1, \psi^{\varepsilon}$ is ε-oscillatory.

Remark

Quasi-linear analysis is needed there (or analytic setting).

Lack of well-posedness: $s<0$

Case of the torus, $x \in \mathbb{T}^{d}$:

- Case $d=1$: Christ-Colliander-Tao. No well-posedness from $H^{s}(\mathbb{T})$ to $H^{k}(\mathbb{T}), \forall s<0, \forall k \in \mathbb{R}$.
- Refined in the case $d=\sigma=1$ by L. Molinet.
- Generalization (RC-E. Dumas-C. Sparber): $d, \sigma \geqslant 1$.

Argument: multiphase weakly nonlinear geometric optics. Interaction of 2 modes:

 from high to low frequencies.

Lack of well-posedness: $s<0$

Case of the torus, $x \in \mathbb{T}^{d}$:

- Case $d=1$: Christ-Colliander-Tao. No well-posedness from $H^{s}(\mathbb{T})$ to $H^{k}(\mathbb{T}), \forall s<0, \forall k \in \mathbb{R}$.
- Refined in the case $d=\sigma=1$ by L. Molinet.
- Generalization (RC-E. Dumas-C. Sparber): $d, \sigma \geqslant 1$.

Argument: multiphase weakly nonlinear geometric optics.

Interaction of 2 modes:

Interaction of the modes: coupling $a_{0} / a_{1} \rightsquigarrow$ nonlinear modulation, transfer from high to low frequencies.

Lack of well-posedness: $s<0$

Case of the torus, $x \in \mathbb{T}^{d}$:

- Case $d=1$: Christ-Colliander-Tao. No well-posedness from $H^{s}(\mathbb{T})$ to $H^{k}(\mathbb{T}), \forall s<0, \forall k \in \mathbb{R}$.
- Refined in the case $d=\sigma=1$ by L. Molinet.
- Generalization (RC-E. Dumas-C. Sparber): $d, \sigma \geqslant 1$.

Argument: multiphase weakly nonlinear geometric optics.
Interaction of 2 modes:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=\alpha_{0}(x)+\alpha_{1}(x) e^{i x_{1} / \varepsilon}
$$

Interaction of the modes: coupling $a_{0} / a_{1} \leadsto$ nonlinear modulation, transfer from high to low frequencies.

Lack of well-posedness: $s<0$

Case of the torus, $x \in \mathbb{T}^{d}$:

- Case $d=1$: Christ-Colliander-Tao. No well-posedness from $H^{s}(\mathbb{T})$ to $H^{k}(\mathbb{T}), \forall s<0, \forall k \in \mathbb{R}$.
- Refined in the case $d=\sigma=1$ by L. Molinet.
- Generalization (RC-E. Dumas-C. Sparber): $d, \sigma \geqslant 1$.

Argument: multiphase weakly nonlinear geometric optics.
Interaction of 2 modes:

$$
\begin{gathered}
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=\alpha_{0}(x)+\alpha_{1}(x) e^{i x_{1} / \varepsilon} . \\
\psi^{\varepsilon}(t, x)=a_{0}(t, x)+a_{1}(t, x) e^{i\left(x_{1}-t / 2\right) / \varepsilon}+\mathcal{O}(\varepsilon) \text { in } W=\mathcal{F}\left(L^{1}\right) .
\end{gathered}
$$

Interaction of the modes: coupling $a_{0} / a_{1} \rightsquigarrow$ nonlinear modulation, transfer from high to low frequencies.

Lack of well-posedness: $s<0$

Case of the torus, $x \in \mathbb{T}^{d}$:

- Case $d=1$: Christ-Colliander-Tao. No well-posedness from $H^{s}(\mathbb{T})$ to $H^{k}(\mathbb{T}), \forall s<0, \forall k \in \mathbb{R}$.
- Refined in the case $d=\sigma=1$ by L. Molinet.
- Generalization (RC-E. Dumas-C. Sparber): $d, \sigma \geqslant 1$.

Argument: multiphase weakly nonlinear geometric optics.
Interaction of 2 modes:

$$
\begin{aligned}
& \qquad i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} ; \quad \psi^{\varepsilon}(0, x)=\alpha_{0}(x)+\alpha_{1}(x) e^{i x_{1} / \varepsilon} \\
& \psi^{\varepsilon}(t, x)=a_{0}(t, x)+a_{1}(t, x) e^{i\left(x_{1}-t / 2\right) / \varepsilon}+\mathcal{O}(\varepsilon) \text { in } W=\mathcal{F}\left(L^{1}\right) \text {. } \\
& \text { Interaction of the modes: coupling } a_{0} / a_{1} \rightsquigarrow \text { nonlinear modulation, transfer } \\
& \text { from high to low frequencies. }
\end{aligned}
$$

Loss of regularity

\mathbb{R}^{d} : lack of wp $H^{s} \rightarrow H^{s}$, norm inflation if $s \leqslant-d / 2[C C T]$.
Argument of Bejenaru-Tao: to prove instability, work on Picard's scheme. [CDS2]: lack of wp $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{k}\left(\mathbb{R}^{d}\right), \forall s<0, \forall k \in \mathbb{R}$.

Theorem (CDS2)

Suppose $d \geqslant 2, \sigma \in \mathbb{N}$. Let $s<-1 /(2 \sigma+1)$. There exists a family $\left(u_{0}^{h}\right)_{0<h \leqslant 1}$ in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
\left\|u_{0}^{h}\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \rightarrow 0 \text { as } h \rightarrow 0,
$$

a solution u^{h} to (NLS) and $0<t^{h} \rightarrow 0$, such that:

Remark

On \mathbb{T}^{d}, same result under the assumption $s<0$

Loss of regularity

\mathbb{R}^{d} : lack of wp $H^{s} \rightarrow H^{s}$, norm inflation if $s \leqslant-d / 2$ [CCT].
$\mathbb{R}^{d}, d \geqslant 2: i \partial_{t} u+\frac{1}{2} \Delta u=|u|^{2 \sigma} u \quad ; \quad u_{\mid t=0}=u_{0}$.
Argument of Bejenaru-Tao: to prove instability, work on Picard's scheme.

Theorem (CDS2)

Suppose $d \geqslant 2, \sigma \in \mathbb{N}$. Let $s<-1 /(2 \sigma+1)$. There exists a family $\left(u_{0}^{h}\right)_{0<h \leqslant 1}$ in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

a solution u^{h} to (NLS) and $0<t^{h} \rightarrow 0$, such that:

Remark

On \mathbb{T}^{d}, same result under the assumption $s<0$

Loss of regularity

\mathbb{R}^{d} : lack of wp $H^{s} \rightarrow H^{s}$, norm inflation if $s \leqslant-d / 2$ [CCT].
$\mathbb{R}^{d}, d \geqslant 2: i \partial_{t} u+\frac{1}{2} \Delta u=|u|^{2 \sigma} u \quad ; \quad u_{\mid t=0}=u_{0}$.
Argument of Bejenaru-Tao: to prove instability, work on Picard's scheme. \rightsquigarrow [CDS2]: lack of wp $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{k}\left(\mathbb{R}^{d}\right), \forall s<0, \forall k \in \mathbb{R}$.

Theorem (CDS2)

\square

a solution u^{h} to (NLS) and $0<t^{h} \rightarrow 0$, such that:

Remark

Loss of regularity

\mathbb{R}^{d} : lack of wp $H^{s} \rightarrow H^{s}$, norm inflation if $s \leqslant-d / 2$ [CCT].
$\mathbb{R}^{d}, d \geqslant 2: i \partial_{t} u+\frac{1}{2} \Delta u=|u|^{2 \sigma} u \quad ; \quad u_{\mid t=0}=u_{0}$.
Argument of Bejenaru-Tao: to prove instability, work on Picard's scheme. $\rightsquigarrow[C D S 2]:$ lack of wp $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{k}\left(\mathbb{R}^{d}\right), \forall s<0, \forall k \in \mathbb{R}$.

Theorem (CDS2)

Suppose $d \geqslant 2, \sigma \in \mathbb{N}$. Let $s<-1 /(2 \sigma+1)$. There exists a family $\left(u_{0}^{h}\right)_{0<h \leqslant 1}$ in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
\left\|u_{0}^{h}\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \rightarrow 0 \text { as } h \rightarrow 0
$$

a solution u^{h} to (NLS) and $0<t^{h} \rightarrow 0$, such that:

$$
\left\|u^{h}\left(t^{h}\right)\right\|_{H^{k}\left(\mathbb{R}^{d}\right)} \rightarrow+\infty \text { as } h \rightarrow 0, \forall k \in \mathbb{R}
$$

Loss of regularity

\mathbb{R}^{d} : lack of wp $H^{s} \rightarrow H^{s}$, norm inflation if $s \leqslant-d / 2$ [CCT].
$\mathbb{R}^{d}, d \geqslant 2: i \partial_{t} u+\frac{1}{2} \Delta u=|u|^{2 \sigma} u \quad ; \quad u_{\mid t=0}=u_{0}$.
Argument of Bejenaru-Tao: to prove instability, work on Picard's scheme. $\rightsquigarrow[C D S 2]:$ lack of wp $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{k}\left(\mathbb{R}^{d}\right), \forall s<0, \forall k \in \mathbb{R}$.

Theorem (CDS2)

Suppose $d \geqslant 2, \sigma \in \mathbb{N}$. Let $s<-1 /(2 \sigma+1)$. There exists a family $\left(u_{0}^{h}\right)_{0<h \leqslant 1}$ in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
\left\|u_{0}^{h}\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \rightarrow 0 \text { as } h \rightarrow 0
$$

a solution u^{h} to (NLS) and $0<t^{h} \rightarrow 0$, such that:

$$
\left\|u^{h}\left(t^{h}\right)\right\|_{H^{k}\left(\mathbb{R}^{d}\right)} \rightarrow+\infty \text { as } h \rightarrow 0, \forall k \in \mathbb{R}
$$

Remark

On \mathbb{T}^{d}, same result under the assumption $s<0$.

Scheme of the proof: reduction to WNLGO

General scaling $\psi^{\varepsilon}(t, x)=\varepsilon^{\alpha} u\left(\varepsilon^{\beta} t, \varepsilon^{\gamma} x\right)$.

Times of order $\mathcal{O}(1)$ for ψ^{ε} m times of order o(1) for $u: \beta>0$.

$$
1+\beta=2+2 \gamma=1+2 \sigma \alpha .
$$

Initial data: $\psi^{\varepsilon}(0, x)=\sum \alpha_{j}(x) e^{i \kappa_{j} \cdot x / \varepsilon}$, with $\kappa_{j} \in \mathbb{R}^{d}$ and $\alpha_{j} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
This yields

Scheme of the proof: reduction to WNLGO

General scaling $\psi^{\varepsilon}(t, x)=\varepsilon^{\alpha} u\left(\varepsilon^{\beta} t, \varepsilon^{\gamma} x\right)$. Goal:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon}
$$

Times of order $\mathcal{O}(1)$ for $\psi^{\varepsilon} \longleftrightarrow$ times of order o(1) for $u: \beta>0$.

$$
1+\beta=2+2 \gamma=1+2 \sigma \alpha
$$

Initial data: $\psi^{\varepsilon}(0, x)=\sum \alpha_{j}(x) e^{i \kappa_{j} \cdot x / \varepsilon}$, with $\kappa_{j} \in \mathbb{R}^{d}$ and $\alpha_{j} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.

This yields

Scheme of the proof: reduction to WNLGO

General scaling $\psi^{\varepsilon}(t, x)=\varepsilon^{\alpha} u\left(\varepsilon^{\beta} t, \varepsilon^{\gamma} x\right)$. Goal:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon}
$$

Times of order $\mathcal{O}(1)$ for $\psi^{\varepsilon} \longleftrightarrow$ times of order o(1) for $u: \beta>0$.

$$
1+\beta=2+2 \gamma=1+2 \sigma \alpha
$$

Initial data:

 This yields
Scheme of the proof: reduction to WNLGO

General scaling $\psi^{\varepsilon}(t, x)=\varepsilon^{\alpha} u\left(\varepsilon^{\beta} t, \varepsilon^{\gamma} x\right)$. Goal:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon}
$$

Times of order $\mathcal{O}(1)$ for $\psi^{\varepsilon} \longleftrightarrow$ times of order o(1) for $u: \beta>0$.

$$
\begin{gathered}
1+\beta=2+2 \gamma=1+2 \sigma \alpha . \\
\psi^{\varepsilon}(t, x)=\varepsilon^{\beta /(2 \sigma)} u\left(\varepsilon^{\beta} t, \varepsilon^{(\beta-1) / 2} x\right) .
\end{gathered}
$$

Initial data:

 This yields
Scheme of the proof: reduction to WNLGO

General scaling $\psi^{\varepsilon}(t, x)=\varepsilon^{\alpha} u\left(\varepsilon^{\beta} t, \varepsilon^{\gamma} x\right)$. Goal:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon}
$$

Times of order $\mathcal{O}(1)$ for ψ^{ε} thas times of order o(1) for u : $\beta>0$.

$$
\begin{gathered}
1+\beta=2+2 \gamma=1+2 \sigma \alpha . \\
\psi^{\varepsilon}(t, x)=\varepsilon^{\beta /(2 \sigma)} u\left(\varepsilon^{\beta} t, \varepsilon^{(\beta-1) / 2} x\right) .
\end{gathered}
$$

Initial data: $\psi^{\varepsilon}(0, x)=\sum \alpha_{j}(x) e^{i \kappa_{j} \cdot x / \varepsilon}$, with $\kappa_{j} \in \mathbb{R}^{d}$ and $\alpha_{j} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.

Scheme of the proof: reduction to WNLGO

General scaling $\psi^{\varepsilon}(t, x)=\varepsilon^{\alpha} u\left(\varepsilon^{\beta} t, \varepsilon^{\gamma} x\right)$. Goal:

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon}
$$

Times of order $\mathcal{O}(1)$ for $\psi^{\varepsilon} \longleftrightarrow$ times of order o(1) for u : $\beta>0$.

$$
\begin{gathered}
1+\beta=2+2 \gamma=1+2 \sigma \alpha . \\
\psi^{\varepsilon}(t, x)=\varepsilon^{\beta /(2 \sigma)} u\left(\varepsilon^{\beta} t, \varepsilon^{(\beta-1) / 2} x\right) .
\end{gathered}
$$

Initial data: $\psi^{\varepsilon}(0, x)=\sum \alpha_{j}(x) e^{i \kappa_{j} \cdot x / \varepsilon}$, with $\kappa_{j} \in \mathbb{R}^{d}$ and $\alpha_{j} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. This yields

$$
u_{0}(x)=\varepsilon^{-\beta /(2 \sigma)} \sum_{j \in J_{0}} \alpha_{j}\left(x \varepsilon^{(1-\beta) / 2}\right) e^{i \kappa_{j} \cdot x / \varepsilon^{(1+\beta) / 2}}
$$

A useful lemma

Lemma

Let $d \geqslant 1, \beta>0$. For $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right), \kappa \in \mathbb{R}^{d}$:

$$
I^{\varepsilon}(f, \kappa)(x):=f\left(x \varepsilon^{(1-\beta) / 2}\right) e^{i \kappa \cdot x / \varepsilon^{(1+\beta) / 2}}
$$

(1) $\kappa \neq 0: \forall s \leqslant 0, \exists C=C(s, \kappa)$ such that $\forall f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,

$$
\left\|I^{\varepsilon}(f, \kappa)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2} \leqslant C \varepsilon^{-d(1-\beta) / 2+(1+\beta)|s|}\|f\|_{H^{m}\left(\mathbb{R}^{d}\right)}^{2}
$$

(2) For all $s \leqslant 0, \beta<1$ and $f \in L^{2}\left(\mathbb{R}^{d}\right)$,

$$
\left\|I^{\varepsilon}(f, 0)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}=\varepsilon^{-d(1-\beta) / 2}\left(\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+o(1)\right), \quad \text { as } \varepsilon \rightarrow 0
$$

(3) If $\beta>1, s \leqslant 0$, and $f \in H^{s}\left(\mathbb{R}^{d}\right)$,

$$
\left\|I^{\varepsilon}(f, 0)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2} \geqslant \varepsilon^{-d(1-\beta) / 2+(\beta-1) s}\|f\|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}
$$

Application

If:
(1) the zero mode is generated by nonlinear interaction of nonzero initial modes,
(2) $0<\beta \leqslant 1$,
the theorem follows, provided $s<-1 /(2 \sigma)$.
\rightsquigarrow Second point $=$ algebra.
\rightsquigarrow First point $=$ multiphase W NLGO for $d \geqslant 2$

Application

If:
(1) the zero mode is generated by nonlinear interaction of nonzero initial modes,
(2) $0<\beta \leqslant 1$,
the theorem follows, provided $s<-1 /(2 \sigma)$.
\rightsquigarrow Second point $=$ algebra.
\rightsquigarrow First point $=$ multiphase WNLGO for $d \geqslant 2$.

Application

If:
(1) the zero mode is generated by nonlinear interaction of nonzero initial modes,
(2) $0<\beta \leqslant 1$,
the theorem follows, provided $s<-1 /(2 \sigma)$.
\rightsquigarrow Second point $=$ algebra .
\rightsquigarrow First point $=$ multiphase WNLGO for $d \geqslant 2$.

Multiphase WNLGO

Linear phases: $\phi_{j}(t, x)=\kappa_{j} \cdot x-\frac{\left|\kappa_{j}\right|^{2}}{2} t$.
Nonlinear interaction $\rightsquigarrow \phi=\phi_{1}-\phi_{2}+\phi_{3}-\cdots+\phi_{2 \sigma+1}$:
$\phi(t, x)=\kappa \cdot x-\omega t$.
Resonance: $\omega=|\kappa|^{2} / 2$ (otherwise: nonstationary phase).
Cubic case ($\sigma=1$): resonances fully described by an algorithm based on the completion of rectangles (Colliander-Keel-Staffilani-Takaoka-Tao).
$\sigma \geqslant 2$: geometric insight more intricate.

Remark

If $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ generates a resonance when $\sigma=1$, then so does $\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{3}\right)$ for $\sigma \geqslant 2$.

Multiphase WNLGO

Linear phases: $\phi_{j}(t, x)=\kappa_{j} \cdot x-\frac{\left|\kappa_{j}\right|^{2}}{2} t$.
Nonlinear interaction $\rightsquigarrow \phi=\phi_{1}-\phi_{2}+\phi_{3}-\cdots+\phi_{2 \sigma+1}$: $\phi(t, x)=\kappa \cdot x-\omega t$.
Resonance: $\omega=|\kappa|^{2} / 2$ (otherwise: nonstationary phase).
Cubic case ($\sigma=1$): resonances fully described by an algorithm based on the completion of rectangles (Colliander-Keel-Staffilani-Takaoka-Tao)
$\sigma \geqslant 2$: geometric insight more intricate.

Remark

If $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ generates a resonance when $\sigma=1$, then so does $\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{3}\right)$ for $\sigma \geqslant 2$.

Multiphase WNLGO

Linear phases: $\phi_{j}(t, x)=\kappa_{j} \cdot x-\frac{\left|\kappa_{j}\right|^{2}}{2} t$.
Nonlinear interaction $\rightsquigarrow \phi=\phi_{1}-\phi_{2}+\phi_{3}-\cdots+\phi_{2 \sigma+1}$:
$\phi(t, x)=\kappa \cdot x-\omega t$.
Resonance: $\omega=|\kappa|^{2} / 2$ (otherwise: nonstationary phase).
Cubic case ($\sigma=1$): resonances fully described by an algorithm based on the completion of rectangles (Colliander-Keel-Staffilani-Takaoka-Tao)
$\sigma \geqslant 2$: geometric insight more intricate.

Remark

If $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ generates a resonance when $\sigma=1$, then so does $\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{3}\right)$ for $\sigma \geqslant 2$.

Multiphase WNLGO

Linear phases: $\phi_{j}(t, x)=\kappa_{j} \cdot x-\frac{\left|\kappa_{j}\right|^{2}}{2} t$.
Nonlinear interaction $\rightsquigarrow \phi=\phi_{1}-\phi_{2}+\phi_{3}-\cdots+\phi_{2 \sigma+1}$:
$\phi(t, x)=\kappa \cdot x-\omega t$.
Resonance: $\omega=|\kappa|^{2} / 2$ (otherwise: nonstationary phase).
Cubic case ($\sigma=1$): resonances fully described by an algorithm based on the completion of rectangles (Colliander-Keel-Staffilani-Takaoka-Tao).
$\sigma \geqslant 2$: geometric insight more intricate

Remark

If $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ generates a resonance when $\sigma=1$, then so does

Multiphase WNLGO

Linear phases: $\phi_{j}(t, x)=\kappa_{j} \cdot x-\frac{\left|\kappa_{j}\right|^{2}}{2} t$.
Nonlinear interaction $\rightsquigarrow \phi=\phi_{1}-\phi_{2}+\phi_{3}-\cdots+\phi_{2 \sigma+1}$:
$\phi(t, x)=\kappa \cdot x-\omega t$.
Resonance: $\omega=|\kappa|^{2} / 2$ (otherwise: nonstationary phase).
Cubic case ($\sigma=1$): resonances fully described by an algorithm based on the completion of rectangles (Colliander-Keel-Staffilani-Takaoka-Tao).
$\sigma \geqslant 2$: geometric insight more intricate.

Remark

If $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ generates a resonance when $\sigma=1$, then so does

Multiphase WNLGO

Linear phases: $\phi_{j}(t, x)=\kappa_{j} \cdot x-\frac{\left|\kappa_{j}\right|^{2}}{2} t$.
Nonlinear interaction $\rightsquigarrow \phi=\phi_{1}-\phi_{2}+\phi_{3}-\cdots+\phi_{2 \sigma+1}$:
$\phi(t, x)=\kappa \cdot x-\omega t$.
Resonance: $\omega=|\kappa|^{2} / 2$ (otherwise: nonstationary phase).
Cubic case ($\sigma=1$): resonances fully described by an algorithm based on the completion of rectangles (Colliander-Keel-Staffilani-Takaoka-Tao).
$\sigma \geqslant 2$: geometric insight more intricate.

Remark

If $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ generates a resonance when $\sigma=1$, then so does $\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{3}\right)$ for $\sigma \geqslant 2$.

The key example

Example

Set of initial phases:

$$
\Phi_{0}=\left\{\kappa_{1}=(1,0, \ldots, 0), \kappa_{2}=(1,1,0, \ldots, 0), \kappa_{3}=(0,1,0, \ldots, 0)\right\}
$$

Cubic nonlinearity $(\sigma=1)$: the set of relevant phases is

$$
\Phi=\Phi_{0} \cup\left\{\kappa_{0}=0_{\mathbb{R}^{d}}\right\} .
$$

Higher order nonlinearities $(\sigma \geqslant 2)$: $0 \in \Phi$.

Amplitudes

A word of caution: the geometry of phases does not suffices for the effective appearance of a new mode.

Example
$d=1$ (flat rectangles): nonlinear modulation of the amplitudes $=$ phase modulation.
\rightsquigarrow No creation.
If $d \geqslant 2$, things are different.

Amplitudes

A word of caution: the geometry of phases does not suffices for the effective appearance of a new mode.

Example

$d=1$ (flat rectangles): nonlinear modulation of the amplitudes $=$ phase modulation.
\rightsquigarrow No creation.
If $d \geqslant 2$, things are different.

Amplitudes

A word of caution: the geometry of phases does not suffices for the effective appearance of a new mode.

Example
$d=1$ (flat rectangles): nonlinear modulation of the amplitudes $=$ phase modulation.
\rightsquigarrow No creation.
If $d \geqslant 2$, things are different.

General transport system

$$
\partial_{t} a_{j}+\kappa_{j} \cdot \nabla a_{j}=-i \sum_{\left(\ell_{1}, \ldots, \ell_{2 \sigma+1}\right) \in I_{j}} a_{\ell_{1}} \bar{a}_{\ell_{2}} \ldots a_{\ell_{2 \sigma+1}} \quad ; \quad a_{j \mid t=0}=\alpha_{j} .
$$

Lemma

$\sigma \in \mathbb{N}^{*}, d \geqslant 2$. Consider the key example. There exist $\alpha_{1}, \alpha_{2}, \alpha_{3} \in S\left(\mathbb{R}^{d}\right)$

 such that if we set $\kappa_{0}=0_{\mathbb{R}^{d}}$,

For instance, this is so if $\alpha_{1}=\alpha_{2}=\alpha_{3} \neq 0$.

Effective creation of the zero mode

General transport system

$$
\partial_{t} a_{j}+\kappa_{j} \cdot \nabla a_{j}=-i \sum_{\left(\ell_{1}, \ldots, \ell_{2 \sigma+1}\right) \in l_{j}} a_{\ell_{1}} \bar{a}_{\ell_{2}} \ldots a_{\ell_{2 \sigma+1}} \quad ; \quad a_{j \mid t=0}=\alpha_{j} .
$$

Lemma

$\sigma \in \mathbb{N}^{*}, d \geqslant 2$. Consider the key example. There exist $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ such that if we set $\kappa_{0}=0_{\mathbb{R}^{d}}$,

$$
\partial_{t} a_{0} \mid t=0 \neq 0
$$

For instance, this is so if $\alpha_{1}=\alpha_{2}=\alpha_{3} \neq 0$.

\rightsquigarrow Effective creation of the zero mode.

General transport system

$$
\partial_{t} a_{j}+\kappa_{j} \cdot \nabla a_{j}=-i \sum_{\left(\ell_{1}, \ldots, \ell_{2 \sigma+1}\right) \in l_{j}} a_{\ell_{1}} \bar{a}_{\ell_{2}} \ldots a_{\ell_{2 \sigma+1}} \quad ; \quad a_{j \mid t=0}=\alpha_{j} .
$$

Lemma

$\sigma \in \mathbb{N}^{*}, d \geqslant 2$. Consider the key example. There exist $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ such that if we set $\kappa_{0}=0_{\mathbb{R}^{d}}$,

$$
\partial_{t} a_{0 \mid t=0} \neq 0
$$

For instance, this is so if $\alpha_{1}=\alpha_{2}=\alpha_{3} \neq 0$.
\rightsquigarrow Effective creation of the zero mode.

From $s<-1 /(2 \sigma)$ to $s<-1 /(2 \sigma+1)$

More weakly NLGO: $J>1$,

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon^{J}\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=\sum_{j \in J_{0}} \alpha_{j}(x) e^{i \kappa_{j} \cdot x / \varepsilon}
$$

$\rightsquigarrow \ln H^{s}, s<0$, the nonlinearity may play a role at leading order.

From $s<-1 /(2 \sigma)$ to $s<-1 /(2 \sigma+1)$

More weakly NLGO: $J>1$,

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon^{J}\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=\sum_{j \in J_{0}} \alpha_{j}(x) e^{i \kappa_{j} \cdot x / \varepsilon}
$$

$\rightsquigarrow J>1$: NL effects are negligible at leading order in $L^{2} \cap L^{\infty}$.
$5<0$, the nonlinearity may play a role at leading order.

From $s<-1 /(2 \sigma)$ to $s<-1 /(2 \sigma+1)$

More weakly NLGO: $J>1$,

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}+\frac{\varepsilon^{2}}{2} \Delta \psi^{\varepsilon}=\varepsilon^{J}\left|\psi^{\varepsilon}\right|^{2 \sigma} \psi^{\varepsilon} \quad ; \quad \psi^{\varepsilon}(0, x)=\sum_{j \in J_{0}} \alpha_{j}(x) e^{i \kappa_{j} \cdot x / \varepsilon}
$$

$\rightsquigarrow J>1$: NL effects are negligible at leading order in $L^{2} \cap L^{\infty}$.
$\rightsquigarrow \ln H^{s}, s<0$, the nonlinearity may play a role at leading order.

Pretend $J=1$, and consider the system of transport equations:

$$
\partial_{t} a_{j}^{\varepsilon}+\kappa_{j} \cdot \nabla a_{j}^{\varepsilon}=-i \varepsilon^{J-1} \sum_{\left(\ell_{1}, \ldots, \ell_{2 \sigma+1}\right) \in I_{j}} a_{\ell_{1}}^{\varepsilon} \bar{a}_{\ell_{2}}^{\varepsilon} \ldots a_{\ell_{2 \nu+1}}^{\varepsilon} \quad ; \quad a_{j \mid t=0}^{\varepsilon}=\alpha_{j}
$$

$$
a_{j}^{\varepsilon}(t, x)=\alpha_{j}\left(x-t \kappa_{j}\right)+\mathcal{O}\left(\varepsilon^{J-1}\right) \text { in } C\left([0, T], L^{2}\left(\mathbb{R}^{d}\right)\right)
$$

Setting $u_{\mathrm{app}}^{\varepsilon}(t, x)=\sum a_{j}^{\varepsilon}(t, x) e^{i \phi_{j}(t, x) / \varepsilon}$, we can prove:

Useful Lemma: $\left\|a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \approx \varepsilon^{J-1}$, for $t>0$ arbitrarily small. Also, for $s \leqslant 0,\left\|u_{\text {anp }}^{\varepsilon}(t)-a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \lesssim \varepsilon^{|s|}$. We infer, if $s \leqslant 0$,

$$
\left\|u^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)}=\left\|a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)}+\mathcal{O}\left(\varepsilon^{|s|}\right)+\mathcal{O}(\varepsilon)
$$

Pretend $J=1$, and consider the system of transport equations:

$$
\begin{gathered}
\partial_{t} a_{j}^{\varepsilon}+\kappa_{j} \cdot \nabla a_{j}^{\varepsilon}=-i \varepsilon^{J-1} \sum_{\left(\ell_{1}, \ldots, \ell_{2 \sigma+1}\right) \in I_{j}} a_{\ell_{1}}^{\varepsilon} \bar{a}_{\ell_{2}}^{\varepsilon} \ldots a_{\ell_{2 \nu+1}}^{\varepsilon} ; a_{j \mid t=0}^{\varepsilon}=\alpha_{j} . \\
a_{j}^{\varepsilon}(t, x)=\alpha_{j}\left(x-t \kappa_{j}\right)+\mathcal{O}\left(\varepsilon^{J-1}\right) \text { in } C\left([0, T], L^{2}\left(\mathbb{R}^{d}\right)\right) .
\end{gathered}
$$

$$
\text { Setting } u_{\mathrm{app}}^{\varepsilon}(t, x)=\sum a_{j}^{\varepsilon}(t, x) e^{i \phi_{j}(t, x) / \varepsilon} \text {, we can prove: }
$$

Also, for $s \leqslant 0, \| u$
We infer, if $s \leqslant 0$,

Pretend $J=1$, and consider the system of transport equations:

$$
\begin{gathered}
\partial_{t} a_{j}^{\varepsilon}+\kappa_{j} \cdot \nabla a_{j}^{\varepsilon}=-i \varepsilon^{J-1} \sum_{\left(\ell_{1}, \ldots, \ell_{2 \sigma+1}\right) \in I_{j}} a_{\ell_{1}}^{\varepsilon} \bar{a}_{\ell_{2}}^{\varepsilon} \ldots a_{\ell_{2 \nu+1}}^{\varepsilon} \quad ; \quad a_{j \mid t=0}^{\varepsilon}=\alpha_{j} . \\
a_{j}^{\varepsilon}(t, x)=\alpha_{j}\left(x-t \kappa_{j}\right)+\mathcal{O}\left(\varepsilon^{J-1}\right) \text { in } C\left([0, T], L^{2}\left(\mathbb{R}^{d}\right)\right) .
\end{gathered}
$$

Setting $u_{\mathrm{app}}^{\varepsilon}(t, x)=\sum a_{j}^{\varepsilon}(t, x) e^{i \phi_{j}(t, x) / \varepsilon}$, we can prove:

$$
\sup _{t \in[0, T]}\left\|u^{\varepsilon}(t)-u_{\mathrm{app}}^{\varepsilon}(t)\right\|_{L^{2}}=\mathcal{O}(\varepsilon)
$$

Useful Lemma: $\left\|a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \approx \varepsilon^{J-1}$, for $t>0$ arbitrarily small.
Also, for $s \leqslant 0, \| u$
We infer, if $s \leqslant 0$,

Pretend $J=1$, and consider the system of transport equations:

$$
\begin{gathered}
\partial_{t} a_{j}^{\varepsilon}+\kappa_{j} \cdot \nabla a_{j}^{\varepsilon}=-i \varepsilon^{J-1} \sum_{\left(\ell_{1}, \ldots, \ell_{2 \sigma+1}\right) \in I_{j}} a_{\ell_{1}}^{\varepsilon} \bar{a}_{\ell_{2}}^{\varepsilon} \ldots a_{\ell_{2 \nu+1}}^{\varepsilon} \quad ; \quad a_{j \mid t=0}^{\varepsilon}=\alpha_{j} \\
a_{j}^{\varepsilon}(t, x)=\alpha_{j}\left(x-t \kappa_{j}\right)+\mathcal{O}\left(\varepsilon^{J-1}\right) \text { in } C\left([0, T], L^{2}\left(\mathbb{R}^{d}\right)\right)
\end{gathered}
$$

Setting $u_{\mathrm{app}}^{\varepsilon}(t, x)=\sum a_{j}^{\varepsilon}(t, x) e^{i \phi_{j}(t, x) / \varepsilon}$, we can prove:

$$
\sup _{t \in[0, T]}\left\|u^{\varepsilon}(t)-u_{\mathrm{app}}^{\varepsilon}(t)\right\|_{L^{2}}=\mathcal{O}(\varepsilon)
$$

Useful Lemma: $\left\|a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \approx \varepsilon^{J-1}$, for $t>0$ arbitrarily small. Also, for $s \leqslant 0,\left\|u_{\mathrm{app}}^{\varepsilon}(t)-a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \lesssim \varepsilon^{|s|}$.

Pretend $J=1$, and consider the system of transport equations:

$$
\left.\begin{array}{c}
\partial_{t} a_{j}^{\varepsilon}+\kappa_{j} \cdot \nabla a_{j}^{\varepsilon}=-i \varepsilon^{J-1} \sum_{\left(\ell_{1}, \ldots, \ell_{2 \sigma+1}\right) \in I_{j}} a_{\ell_{1}}^{\varepsilon} \bar{a}_{\ell_{2}}^{\varepsilon} \ldots a_{\ell_{2 \nu+1}}^{\varepsilon} \quad ; \quad a_{j \mid t=0}^{\varepsilon}=\alpha_{j} \\
a_{j}^{\varepsilon}(t, x)
\end{array}\right)=\alpha_{j}\left(x-t \kappa_{j}\right)+\mathcal{O}\left(\varepsilon^{J-1}\right) \text { in } C\left([0, T], L^{2}\left(\mathbb{R}^{d}\right)\right) .
$$

Setting $u_{\mathrm{app}}^{\varepsilon}(t, x)=\sum a_{j}^{\varepsilon}(t, x) e^{i \phi_{j}(t, x) / \varepsilon}$, we can prove:

$$
\sup _{t \in[0, T]}\left\|u^{\varepsilon}(t)-u_{\mathrm{app}}^{\varepsilon}(t)\right\|_{L^{2}}=\mathcal{O}(\varepsilon)
$$

Useful Lemma: $\left\|a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \approx \varepsilon^{J-1}$, for $t>0$ arbitrarily small. Also, for $s \leqslant 0,\left\|u_{\text {app }}^{\varepsilon}(t)-a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \lesssim \varepsilon^{|s|}$. We infer, if $s \leqslant 0$,

$$
\left\|u^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)}=\left\|a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)}+\mathcal{O}\left(\varepsilon^{|s|}\right)+\mathcal{O}(\varepsilon)
$$

Pretend $J=1$, and consider the system of transport equations:

$$
\begin{gathered}
\partial_{t} a_{j}^{\varepsilon}+\kappa_{j} \cdot \nabla a_{j}^{\varepsilon}=-i \varepsilon^{J-1} \sum_{\left(\ell_{1}, \ldots, \ell_{2 \sigma+1}\right) \in I_{j}} a_{\ell_{1}}^{\varepsilon} \bar{a}_{\ell_{2}}^{\varepsilon} \ldots a_{\ell_{2 \nu+1}}^{\varepsilon} \quad ; \quad a_{j \mid t=0}^{\varepsilon}=\alpha_{j} \\
a_{j}^{\varepsilon}(t, x)= \\
\alpha_{j}\left(x-t \kappa_{j}\right)+\mathcal{O}\left(\varepsilon^{J-1}\right) \text { in } C\left([0, T], L^{2}\left(\mathbb{R}^{d}\right)\right)
\end{gathered}
$$

Setting $u_{\mathrm{app}}^{\varepsilon}(t, x)=\sum a_{j}^{\varepsilon}(t, x) e^{i \phi_{j}(t, x) / \varepsilon}$, we can prove:

$$
\sup _{t \in[0, T]}\left\|u^{\varepsilon}(t)-u_{\mathrm{app}}^{\varepsilon}(t)\right\|_{L^{2}}=\mathcal{O}(\varepsilon)
$$

Useful Lemma: $\left\|a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \approx \varepsilon^{J-1}$, for $t>0$ arbitrarily small.
Also, for $s \leqslant 0,\left\|u_{\text {app }}^{\varepsilon}(t)-a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)} \lesssim \varepsilon^{|s|}$.
We infer, if $s \leqslant 0$,

$$
\left\|u^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)}=\left\|a_{0}^{\varepsilon}(t)\right\|_{H^{s}\left(\mathbb{R}^{d}\right)}+\mathcal{O}\left(\varepsilon^{|s|}\right)+\mathcal{O}(\varepsilon)
$$

\rightsquigarrow For $t>0$ arbitrarily small, 0 mode is not negligible in H^{s}, if

$$
J-1<|s| \text { and } J-1<1, \text { that is } s<1-J<0 \text { and } J<2 .
$$

